
 IEEE Xtreme Programming Challenge

 FAQ

 The contest has ended.

 Rank: 1079 Score: 9.00

Environment for the programming languages

Language Version Time limit
(in seconds)

Memory limit
(in MB)

Notes

C gcc 4.6.3, C99 Mode 3 256 Math library included (-lm)

C++ g++ 4.6.3, C0x Mode 3 256 Math library included (-lm)

C# Mono 2.10.8.1, C# 4 5 256 Name your class Solution

Python Python 2.7.3 16 256

Java Sun Java 1.7.0_06 5 256 Name your class Solution

PHP PHP 5.3.10 16 256

Perl Perl 5.14.2 16 256

Ruby Ruby 1.9.3p194 16 256

Haskell GHC 7.4.1 5 256

Clojure clojure 1.4.0 5 256 Name your

namespace solution with :gen-

class attribute

Scala scala 2.9.2 5 256 Have your entry point inside an

object named Solution

Common Lisp Common Lisp 2.49 16 64

Lua Lua 5.2.0 16 64

Erlang Erlang 5.8.5 16 64

Javascript node v0.8.8 16 64

These run on quad core Xeon machines running 32-bit Ubuntu (Ubuntu 12.04 LTS \n \l). You should,

however, write your programs in a portable manner and not assume that it will always be run on a 32 bit

architecture. We don't support multi-threaded programs and all your programs should run in a single

thread.

How do the games work?

Assume a board state (format specified in the problem statement) and output the next move. This will be

played repeatedly with every other submission for the game.

Points : The points you gain depends on the number of games you win

University/school : Ensure you add up your university/school name in your Profile tab before playing.

Boost your university rankings and win prizes

Scoring System

Your score depends primarily on the number of test cases your code passes. If you've solved the same

problem multiple times, the solution with the highest score would be considered. Small amounts of bonus

points are awarded for solving it in least number of tries.Question solved by lesser number of coders get

more points than questions solved by more number of programmers. Right now, we do not consider

length of the program, speed of execution or memory usage for the score (as long as your code produces

proper output inside the stipulated time and memory limits).

The scoring scheme

The scores that a problem is assigned is completely dynamic, based on performance of all the hackers.

The formula is like this:

Problem score = 20 + 80 x (1 - 2 * Success Rate) or 20 (whichever is more), where

Success Rate = Total number of hackers who solved it/Total number of hackers with atleast one

submission with a positive score.

A new problem starts with a Success Rate of 0, and hence a score of 100. Based on the number of test

cases you pass, you get a fraction (or all) of the Problem score. Lets say you attempted Problem P, which

has cases 1, 2..5, and successfully solved cases 1, 3 and 4. The score you get will be a wighted factor of

the three cases you were able to solve. If you cracked all 5 the fraction will be simply '1', in which case

you decrease the score of all other hackers who were able to solve the same problem. Otherwise, you will

be just increasing them.

Score factor = Sum of correct test cases scores/Sum of total test cases score

Submission Score = Score factor * Problem score

What are test cases?

Our platform runs your code against a certain number of testcases everytime you submit code. A test

case consists of input data that is fed into your program, and the output expected from your program for

that particular input. So, a test case succeeding means that your program produced correct output for that

particular input, while a failure means it didn't produce the expected output (either wrong output or it took

too long and was killed). A 'large' test case means a test case with a large input. You can check how

many testcases your submission passed in the submissions tab. For example, "10/15 testcases passed"

means your submission passed 10 out of our 15 testcases, and failed on the 11th one.

Time Limit Exceeded?

We look for optimal algorithms in your solutions. Every problem has been set a timelimit with respect to its

optimal solution. If your code could not produce the required output within the set time limit, you get a

'Time Limit Exceeded' error. For example, if you get a Time Limit Exceeded message and 5/10 testcases

have passed, your code was unable to handle the 6th test case within the stipulated time. Test cases get

progressively larger, so it is not uncommon for a naive solution to pass the first few (smaller) test cases

and then falter when confronted with the bigger ones.

Wrong Answer?

Your logic is wrong, or you have formatting issues. Make sure that the output format is exactly the same

as specified in the problem statement. Check for extra/missing whitespaces/newlines. If a few test cases

have passed, that probably means some of the later test cases have edge cases that your code is not

handling. Think about every possible edge case within the problem specifications (you will never be given

invalid input), and handle them.

All runtime errors (segfaults, stack overflows, uncaught exceptions, etc) will also show up as 'Wrong

answer'. So check for runaway recursion and allocating too much memory as well.

If you're using Java/Clojure/Scala, please ensure that you follow the appropriate class/package naming

guidelines as mentioned in the table above. These are essential to get your code to run. Please do NOT

use any package names in your code.

STDIN and STDOUT

In most problems, you would read input from STDIN (Standard Input) and write output

to STDOUT (Standard Output). Different languages have different methods of

accessing STDIN and STDOUT . The most common (possibly naive) methods are listed below.

Language STDIN STDOUT

C scanf(), gets(), getchar() printf(), puts(), putchar()

C++ cin cout

C# Console.ReadLine() Console.WriteLine()

Java Example

Python raw_input() print

Ruby gets puts

Perl <STDIN> print

PHP Official Documentation

Haskell Official Documentation

Commmon Lisp (CLISP) Official Documentation Official Documentation

Lua io.read() io.write()

Scala val ln = readLine() println(ln)

Note that these are not the only ways to access STDIN and STDOUT - just the most common.

Does the last line in the input test case end with a newline?

Nope. No trailing spaces or newlines.

http://en.wikipedia.org/wiki/Standard_streams#1995:_Java
http://www.php.net/manual/en/features.commandline.io-streams.php
http://www.haskell.org/tutorial/io.html
http://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node194.html#SECTION002620000000000000000
http://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node197.html#SECTION002630000000000000000

Company Problems

These problems were provided by certain companies. Other than the problem content, it is just like any

other problem, and any company is free to weight its importance how they see fit. It is reasonable to

assume that the company which provided this problem is likely to weight this problem higher, but that's

about all the additional information you can infer from its status as a Company Problem.

I need help!

In order to keep things fair, we can't give additional test cases or provide any specifc hints to code. Any

information that we give must be general and public.

For problem clarification, CodeSprint logistics questions, or just to chat with the CodeSprint team, please

join us in the IRC freenode channel #codesprint

For account specific questions, such as a submission queued for greater than 10 minutes, please email

us at support@interviewstreet.com. We know you guys have a limited amount of time for this, and we'll try

to get back to you as soon as we can.

Approximate Solution Type Problems

What is it?

This is the type of problem in which there can be more than one correct answer and the user's program

can produce any one of them, the judge will evaluate the solution based on the output. Generally

optimisation problems can be of this type, where the most optimal solution is not possible within the time

constraint, but a close result can be obtained.

How it works?

Your program is given the input test cases, and the output generated by your program is given to the

judge. The evaluator allots some score for the output generated by your program.

Eg: Permutation problem

In permutation problem you can print any permutation of number, which will be accepted as a solution.

But score for different permutations are not the same, scoring method will be explained in the question.

So you should try to generate a permutation which will maximise your score.

Similarly for the classification problem, your score is based on the number of correct classification.

The difference between normal problem and approximate solution problem is that, exact output is not

expected. Your submission will be scored on the basis of how near it is to the actual solution.

Game Type Problem

What is it?

This is the type of problem in which you are a given a game state and you are expected to print the next

move of the game. The game will be a two player game.

How do the games work?

http://blog.interviewstreet.com/2011/12/introducing-the-hackerboard-a-christmas-story/
http://webchat.freenode.net/?channels=codesprint&uio=ND10cnVlJjk9dHJ1ZSYxMD10cnVl27

Assume a board state (format specified in the problem statement) and output the next move. This will be

played repeatedly with every other submission for the game.

Points

The points you gain depends on the number of games you win.

University/school

Ensure you add up your university/school name in your Profile tab before playing. Boost your university

rankings and win prizes.

SAMPLE

Sample Problem Statement

Given an integer N, print 'hello world' N times.

Sample Input

5

Sample Output

hello world

hello world

hello world

hello world

hello world

Solution

C

#include <stdio.h>

int main() {

 int i, n;

 scanf("%d", &n);

 for (i=0; i<n; i++) {

 printf("hello world\n");

 }

 return 0;

}

C++

#include <iostream>

using namespace std;

int main() {

 int i, n;

 cin >> n;

 for (i=0; i<n; i++) {

 cout << "hello world\n";

 }

 return 0;

}

C#

using System;

namespace Solution {

 class Solution {

 static void Main(string[] args) {

 var line1 = System.Console.ReadLine().Trim();

 var N = Int32.Parse(line1);

 for (var i = 0; i < N; i++) {

 System.Console.WriteLine("hello world");

 }

 }

 }

}

Java

import java.io.*;

public class Solution {

 public static void main(String args[]) throws Exception {

 BufferedReader br = new BufferedReader(new InputStreamReader(System.i

n));

 String line = br.readLine();

 int N = Integer.parseInt(line);

 for (int i = 0; i < N; i++) {

 System.out.println("hello world");

 }

 }

}

Python

N = int(raw_input())

for i in xrange(N):

 print "hello world"

Ruby

N = gets

1.step(N.to_i, 1) { |i| print "hello world\n" }

PHP

<?php

fscanf(STDIN, "%d\n", $number);

for ($i = 0; $i < $number; $i++) {

 echo "hello world\n";

}

Lua

N = io.read ()

for i = 1, tonumber(N), 1 do

 print("hello world")

end

Common Lisp

(setq strN (read-line))

(setq N (parse-integer strN))

(loop for i from 1 to N do

 (write "hello world")

 (terpri)

)

QUESTION AA

Plot

In a forest, there were 'x' bunnies, 50% male, and 50% female, all adults. Bunnies doubles every 15 days,

10% of the baby rabbits dies at birth. They mature after 30 days, 30% leave the forest, and rest becomes

rabbits. In every 30 days , 25% dies off due to flu. If every bunny dies off, the bunny world ends.

Task

Calculate the final number of bunnies alive after 1 year for any number of initial bunnies, x.

Input

Will be an integer number, the number of initial bunnies. Your program should read from the standard

input

Output

Your program should write back to the standard output. When all bunnies die off, write 0 to the standard

output.

Please note that percentages are truncated

Example

Test Case 1

444 (input)

0 (output)

Test Case 2

30000 (input)

56854 (output)

c

QUESTION AB

Plot

Ron, the ant, got stuck in a honeycomb. He needs to get out of the honeycomb world.

Task

We know the starting location and the exit point in the honeycomb as x,y co-ordinates. Need to get the

minimum distance, the ant has to traverse to get out of the honeycomb, through the edges. maximum size

of the bee hive is limited to 12x12. Each edge is 5mm. Input is taken in a format of x1.y1,x2,y2 from

standard input and output is expected, the minimum distance to be traveled, as a integer value, in

mm. Please check out the above image for more details.

Example

Test Case 1

INPUT: 1.1,4.4

OUTPUT: 45

Test Case 2

INPUT: 1.2,2.4

OUTPUT: 20

QUESTION AC

Description:

Meet Lakshya, he is one of the best cubers of the world. He has this unique talent to solve a Rubik's cube

with his eyes blindfolded! He has recently been experimenting a lot to improve his timing. Lakshya has

been following Singmaster's notation of moves to memorize a lot of standard solving techniques. To

assist him in his pursuit, you offer to help him. Lakshya has now given you the following description of the

tool that he needs:

A tool which will take the initial configuration of rubik's cube (in its solved state) followed by a set of

moves, denoted in Singmaster's notation and generate as output the colors of the tiles present on the

front face of the rubik's cube.

Constraints:

The input will always be a proper list of moves in Singmaster's notation.

Color code is a string of length 6. Moves can be of any length.

INPUT:

Input consists of two lines, first line will contain the configuration of the cube which has color codes for

faces in the following order: Up-Left-Front-Right-Back-Down

Next line will consist of the moves in Singmaster's notation (Only Basic)

OUTPUT:

A matrix of 3x3 with color code for the tiles in the front face after the moves have been made.

Example

Input

YRBOGW

R2

Output

B B G

B B G

B B G

http://en.wikipedia.org/wiki/Rubik's_Cube#Move_notation

Analysis

 Initial state After R2 (R applied twice)

Input 2

YORBWG

RL'

Output 2

G R G

G R G

G R G

Analysis 2

 Initial state After

R After RL' (L applied anti-clockwise)

QUESTION AD

Problem Statement:

Orbroid is an emerging mobile platform, which is opensource and available for various hardware

configurations. Given your inclination towards opensource, you decide to contribute code for this platform

and choose the module with following functional specification:

Dialer is the central app of orbroid platform which searches for name/number from the contact book when

you start dialing numbers on the T9 keypad. The entries in contact book are internally stored as

<firstname>:[lastname]:<number>

where ":" is the field seperator.

The search should consider the T9 text equivalent of entered number. An entry matches if the entered

number matches any of firstname, lastname or number field. T9 keypad is shown as follows:

- 1 - 2 - 3 -

-... -abc -def -

- 4 - 5 - 6 -

-ghi -jkl -mno -

- 7 - 8 - 9 -

-pqrs-tuv -wxyz-

------ 0 ------

------|_| ------

PS: Any special character apart from space maps to key 1. Space maps to key 0.

Constraints:

firstname can be [a-zA-Z_-,. ();]+ and 100 characters in length

lastname can be [a-zA-Z_-,. ();]* and 100 characters in length

number can be [0-9]+ and 20 characters in length

Input:

First line contains N, 0<n<10^5, followed by N lines, with each line having format of

First Name:Optional Lastname:Number

Last line containing the string (of numbers) to be searched

Output:

List of matches in contacts, arranged in increasing order of matching

position, in format of

First Name:Optional Lastname:Number

In case multiple matches have same matching position then according to the order in which they appear

in the input.

In case no matches are found, then the string, “NOT FOUND” has to be printed without quotes.

Example:

Input:

4

Steve:Kilogo:837291091

Mark:Lostworth:428204772

Bill:Laker:256469278

John:Mc millan:7778883929

5646

Output:

John:Mc millan:7778883929

Bill:Laker:256469278

Steve:Kilogo:837291091

Input:

3

Gill:Shaw:61276374888

Mary:Tudor:2818891889

Rajiv:Ghosh:919928388011

8960

Output:

NOT FOUND

QUESTION AF

Description

With the new tax system, in Greece, people have to collect receipts and then sum them up. Here, you will

help to identify valid receipts from their VAT numbers and then make the sum. A Greek VAT number is 8-

digit or 9-digit number. In order to be sure that a VAT number (A8A7A6A5A4A3A2A1 or A9A8A7A6A5A4A3A2A1) is

numerically valid we do all the following steps:

1) If length of VAT number is 8, then assume that it has a zero digit in front of it, and then continue with a

9 digit string.

2) S = Α1 * 0 + Α2 * 2 + Α3 * 4 + Α4 * 8 + Α5 * 16 + Α6 * 32 + Α7 * 64 + Α8 * 128 + Α9 * 256

3) Y = S mod 11

4) If Y == 10 AND A1 == 0, VAT number is numerically valid

5) If Y == A1, VAT number is numerically valid

6) In any other case, VAT number is not valid

Task

You will be given a list of receipts (VAT number, amount in euro cents) and you are asked to create a

program that will identify valid receipts from their VAT number and then return the sum of these receipts.

Input

The input file contains a list of receipts, containing VAT number and amount in euro cents in each line. A

single empty line signifies the end of the list.

Output

The output file will contain the sum of all valid receipts, in euro cents, and a new line.

Sample Input

094185641 3929

092766360 900

030026340 850

092766360 5500

998198381 590

040933250 800

999517462 250

058302582 1410

052866929 160

998686837 570

998475585 3676

Sample Output

18635

Sample Input with invalid VAT

94185641 3929

92766360 900

30026340 850

92766360 5500

998198381 590

40933250 800

999517463 250

58302582 1410

52866929 160

998686837 570

998475585 3676

Sample Output

18385

QUESTION AG

Description

We have two tanks that we can fill them with water. We know beforehand the volume of each tank,

however, there is no other measurement to see how much water there is in each tank. For example, we

can have a tank of 1lt and one of 3lt, and we can‟t fill the second tank up to 2lt by just looking – we are

only sure if we already know how much water already exists in one tank and how much water we are

putting in. What we can do is one of the following three(3) valid moves: A) Empty a tank, B) Fill up a tank

from a faucet that has unlimited supply, C) Move water to one tank from the other one until the first one

fills up or the second one to dry, and if there is remaining water, it is kept or thrown away.

Task

You will be given the volume of each of the two tanks, and also the volume of water we want to find, and

you are asked to answer with the minimum number of moves to be done, according to the description, so

as to reach the goal, if there is one.

Input

A single line containing 3 numbers, the volume of the first tank, the volume of the second and the goal

amount of water we want to find, separated by a single space.

Output

The output will contain just one line containing the minimum number of moves to be done to reach the

goal, or the word „no‟, in case there is no solution.

Sample Input, 1#

4 5 2

Sample Output, 1#

6

Sample Input, 2#

4 6 3

Sample Output, 2#

no

QUESTION AH

Robot Tennis
In Robot World a grand championship on tennis is about to take place. All the best robotic tennis players

have already started practice for this great event and they are ready to give their best for the Robotic Cup!

Unfortunately, due to the bad weather both the tennis field where the tournament was about to take place

was ruined and the referee of the game got ill. Can you develop a program that could simulate the tennis

field and the coach in order to host the tournament?

Task
Your task is to develop a program that can efficiently simulate a tennis match between two robotic tennis

players. The simulation should comply with the following rules of the game:

(Note: please also refer to Fig.1 for a better understanding of the notations and the rules)

1. The tennis court will be a 2 dimensional space comprised of n rows and m columns.

2. At every match, only two robots (Robot1 and Robot2 hereafter) can participate.

3. Robot1 can be positioned at any column (even the rightmost or the leftmost column) but always

at the first row of the tennis court whereas Robot2 can be positioned at any column but always

at the last row of the tennis court.

4. On the rightmost and the leftmost side of the tennis court there exist bouncing walls which may

change the direction of the ball when it collides with them.

5. Moreover, obstacles may exist within the tennis field. Obstacles cannot be positioned at the first

and the last row of the tennis field, nor at the leftmost and rightmost columns of the tennis field

(i.e. obstacles cannot co-exist neither with robots nor with bouncing walls). Obstacles always

alter the direction of the ball.

6. Both robots can only move along the horizontal axis (i.e. only to the right or to the left of their

current position) and never on the vertical axis.

7. No robot is allowed to stay still. At every step, at first the ball moves and then each robot should

moves (on the horizontal axis) towards the ball, meaning that if the ball is positioned at a

column i and the robot is at column j, and i<j< em="">, then the robot should move to the left,

whereas it should move to the right if i>j. In case that both the ball and a robot happen to be in

the same column (i=j), the robot should try to move to the right by default. If this is not possible

(because it is already at the rightmost side of the tennis field and moving to the right means

colliding onto the bouncing wall) then it moves to the left side instead.</j<>

8. When a robot has the ball, it should always throw it towards its opponent at one of the three

possible directions:

a. Diagonally to the left (denoted by L hereafter),

b. Diagonally to the right (denoted by R hereafter) or

c. Straight ahead (denoted by S hereafter).

The direction along which the robot should throw the ball will be decided according to an input

sequence that will be provided as input at the beginning of the program. In particular, a sequence

of directions (e.g. LRSSR) will be provided as input at the beginning of the program, and every

time a Robot has to throw the ball towards its opponent, the next available direction will be

chosen (e.g. for the example sequence LRSSR, the first Robot that catches the ball should throw

it on the L direction towards it opponent, afterwards the R direction should be selected in order to

throw the ball back to the opponent robot, then the S direction and so forth).

9. The ball should continue to move along the direction defined by the robot until one of the

following happens:

a. The ball collides with a bouncing wall: In this case the bouncing wall may change the ball

direction to its opposite. More specifically, if the ball was moving on the R direction, it

changes it to L and vice versa. If the ball was moving on the S direction, the bouncing wall

does not change the ball’s direction (i.e. it will continue moving straight as if the bouncing

wall was not there)

b. The ball collides with an obstacle: In this case, the obstacle always changes the

movement direction of the ball. In particular, if the ball was moving on the R direction when it

collided with the obstacle, it should move on the L direction afterwards and vice versa. In

case the ball was moving on the S direction, then the ball should continue moving straight

but towards the opposite direction (e.g. if the ball was moving straight heading from Robot1

to Robot2, it should then continue moving straight but heading from Robot2 to Robot1).

c. The ball reaches a square where a Robot is positioned: In this case, the Robot should

throw the ball back to the opponent Robot using one of the available directions (L, R or S)

and the ball should start moving along this direction afterwards.

d. The ball reaches the end of the tennis court and no Robot is positioned there: In this

case, the game ends and the Robot positioned at the other side of the tennis field is

nominated winner of the match.

10. The game ends when:

a. The ball reaches the end of the tennis court and no Robot is positioned there: In this

case, the Robot positioned at the other side of the tennis field is nominated winner of the

match.

b. The ball reaches the end of the tennis court and a Robot is positioned there but there

are no remaining directions at the provided input sequence so as for this Robot to throw

the ball back to its opponent: In this case the game ends without a winner.

In order to better explain the rules and the flow of the game, please also consider the following

visualizations of a virtual tennis match between the two Robots.

Visualization I: For the Input Sequence {SL} and Robot1 having the Ball at the beginning of the match.

(Red arrows signify the next position of the ball, whereas pink arrows show where the robot should move

at in order to follow the ball’s course according to Rule 7)

Visualization II: For the Input Sequence {RS} and Robot2 having the Ball at the beginning of the match.

Please note that at Step 1 of Visualization II, although Robot2 sends the ball to the R, since it instantly

bounces on the wall its direction changes and thus moves to the L. Moreover, in every step the robots

move towards the ball, or they move by default to the right if they are already positioned on the same

column with the ball (e.g. Step 1 of Visualization I). In case the robots cannot follow the default right

movement rule, then they moved to the left (e.g. Step 7 of Visualization II). Finally, at Step 9 of

Visualization II, the game ends without a winner since there are no available moves for Robot2 to select.

Input
The program receives its input from the standard input stream. The parameters that should be provided

as input are the following:

1. Two positive integer numbers n1 and n2 (where 1 ≤ n1 ≤ 15 and 1 ≤ n2 ≤ 15) representing the

dimensions of the tennis field (i.e. the number of rows and columns respectively). These two

numbers will be provided in one line and should be separated by a comma (,) character.

2. A positive integer number r1_pos (0 ≤ r1_pos < n2) representing the initial position (in terms of

column number) of Robot1 (the row number position does not need to be provided since Robot1

is always positioned at the 1st row of the tennis field).

3. A positive integer number r2_pos (0 ≤ r2_pos < n2) representing the initial position in terms of

column number) of Robot2 (the row number position does not need to be provided since Robot2

is always positioned at the last row of the tennis field).

4. A positive integer number ball_pos (1 ≤ ball_pos ≤ 2) representing which robot initially has the

ball. More specifically, if ball_pos equals to 1 then Robot1 will initially have the ball, whereas

Robot2 will start the game if ball_pos equals to 2.

5. A positive integer number num_of_obstacles (0 ≤ num_of_obstacles ≤ {(n1 * n2)-

2(n1 + n2)+4}) representing the number of obstacles that will be placed at the tennis field.

6. num_of_obstacles lines should follow representing the position of each obstacle in the tennis

field. These positions should be given in the form of pairs of positive integer

numbers ob_row, ob_col where 1 ≤ ob_row < n1 -1 and 1 ≤ ob_col < n2 -1. These pairs

should be provided as one pair per line and the two integer values at each line should be

separated by a comma (,).

7. A sequence of characters belonging to the set {L,S,R} which represents the available moves

from which the robots will select at which direction to throw the ball during gameplay. This

sequence should be provided in one single line and the characters should not be delimited to

each other.

Output
The program should be able to simulate a match between the two competing robots and print to the

standard output stream the result of the game, as well as the state of the game (i.e. robot positions, ball

position and sequence of movements used) when the game ends. More specifically, the program should

output:

1. At the first line:

 The comment: “Winner: Robot1” if Robot1 wins the match

 The comment: “Winner: Robot2” if Robot2 wins the match

 The comment: “This game does not have a Winner.” if no robot wins the match

2. At the second line:

 The comment: “Robot1 At [x,y]”, where x and y correspond the row and the column at

which Robot1 is positioned when the game ends

3. At the third line:

 The comment: “Robot2 At [x,y]”, where x and y correspond the row and the column at

which Robot2 is positioned when the game ends

4. At the fourth line:

 The comment: “Ball At [x,y]”, where x and y correspond the row and the column at which

the Ball is positioned when the game ends

5. At the fifth line:

 The comment: “Sequence: XXXX…”, where each X stands for a letter belonging to the set

{L, R, S}. In this line all moves that were used during the game should be printed at the

standard output stream (Beware: only the directions of the ball until the game ended should

be printed at this line).

Note: There is a newline character at the end of the last line of the output.

Sample Input 1
4,4

0

3

1

1

1,1

LLRSLRSSR

Sample Output 1
Winner: Robot1

Robot1 At [0,1]

Robot2 At [3,2]

Ball At [3,1]

Sequence: L

Sample Input 2
8,4

3

2

2

5

1,1

2,1

3,2

5,1

4,2

SRLLRSLLRSSLL

Sample Output 2
Winner: Robot2

Robot1 At [0,2]

Robot2 At [7,1]

Ball At [0,1]

Sequence: SR

QUESTION AI

Digital Calculator
My brother John was so fond of his digital calculator that when the one I had once given him as present

broke down, he was very depressed. So, I promised to develop him a program that would actually

efficiently simulate such a digital calculator on the computer screen. Can you help me develop such a

program?

Task
Your task is to develop a program that can efficiently simulate a digital calculator. The program should be

able to receive as input from the standard input stream:

1. Two integer numbers

2. An arithmetic operator (i.e. + for addition, - for subtraction, * for multiplication, / for the integral

(Euclidean) division, or % the for the remainder of the integral(Euclidean) division)

3. A character used to draw the numbers on the screen

4. A positive odd integer value representing the size of each digit

5. A positive integer value representing the gap size between the digits

and then draw the arithmetic calculation and the result on the standard output stream. An example output

of the program is provided at Fig.1, for the arithmetic operation (7 * -22), using the character '@' to

represent digits, selecting a size value equal to 5 and a gap size equal to 3 (dots stand for spaces).

................................@@@@@

...................................@.

..................................@..

.................................@...

................................@....

.....................................

........................@@@@@...@@@@@

.***........................@.......@

.***............@@@@@...@@@@@...@@@@@

.***....................@.......@....

........................@@@@@...@@@@@

.....................................

.....................................

..................@.....@@@@@...@...@

.................@@.....@.......@...@

........@@@@@.....@.....@@@@@...@@@@@

..................@.........@.......@

................@@@@@...@@@@@.......@

Fig. 1. An example of the program output for the arithmetic operation (7 * -22), using the character '@' to

represent digits, selecting a size value equal to 5 and a gap size equal to 3

Input
The program should receive as input:

1. One integer value (-46340 ≤ num1 ≤ 46340) representing the first operand

2. Another integer value (-46340 ≤ num2 ≤ 46340) representing the second operand

3. One of the characters +, -, *, /, % representing the operator that will be applied to the operands.

4. One character used for the drawing of the operands.

5. One positive odd integer value (5 ≤ size ≤ 31) representing the size (i.e. width and height) of

each digit

6. Another positive integer value (1 ≤ gaps ≤ 100) representing the gap size between the digits.

These parameters will be received by the standard input stream, one parameter per line and according to

the order described above.

Output
The program should output on the standard output stream the arithmetic calculation between the input

operands as well as the calculated result. More specifically:

1. At the first size lines, the first integer (num1) number should be drawn

2. Then an empty line (i.e. full of spaces) should be drawn

3. At the following size lines, the second integer (num2) number should be drawn.

4. Again, an empty line (i.e. full of spaces) should be drawn

5. Then, a line full of dashes (-) should be drawn, followed by an empty line (i.e. full of spaces)

6. Finally, at the last size lines, the result of the arithmetic operation should be drawn.

With regards to the horizontal alignment of the output, right side justification should be used. In particular:

1. The first size columns correspond to the operator of the calculation

2. Then gaps columns will be left blank (i.e. full of spaces)

3. Then, the digits of each operand as well as the ones of the deriving result should be drawn using

(size + gaps) columns per digit and aligning the digits to the right side (see Fig. 1)

Each digit, should be drawn using the character that was received as input, whereas the operator should

be drawn using the symbol that corresponds to the selected mathematical operation (e.g. the '+' should

be used to draw the addition operand, whereas the '%' symbol should be used if the remainder operation

was selected). The following figure (Fig. 2) graphically depicts all the digits (using the symbol '#') and all

possible operators (using the symbol that corresponds to each mathematical operation).

.........#....#####..#####..#...#..#####..#####..#####..#####..#####..#####

........##........#......#..#...#..#......#.........#...#...#..#...#..#...#

#####....#....#####..#####..#####..#####..#####....#....#####..#####..#...#

.........#....#..........#......#......#..#...#...#.....#...#......#..#...#

.......#####..#####..#####......#..#####..#####..#......#####..#####..#####

.................................

........................./..%...%

..+............***....../......%.

+++++..-----...***...../......%..

..+............***..../......%...

...................../......%...%

(a)

............#.....#######..#######..#.....#..#######..#######..#######..#######..#######..####

...........##...........#........#..#.....#..#........#.............#...#.....#..#.....#..#...

..#

..........#.#...........#........#..#.....#..#........#............#....#.....#..#.....#..#...

..#

#######.....#.....#######..#######..#######..#######..#######.....#.....#######..#######..#...

..#

............#.....#..............#........#........#..#.....#....#......#.....#........#..#...

..#

............#.....#..............#........#........#..#.....#...#.......#.....#........#..#...

..#

.........#######..#######..#######........#..#######..#######..#........#######..#######..####

...

................................./..%.....%

...+...............*****......../........%.

...+...............*****......./........%..

+++++++..-------...*****....../........%...

...+...............*****...../........%....

...+...............*****..../........%.....

.........................../........%.....%

(b)

...............#......#########..#########..#.......#..#########..#########..#########..######

###..#########..#########

..............##..............#..........#..#.......#..#..........#.................#...#.....

..#..#.......#..#.......#

.............#.#..............#..........#..#.......#..#..........#................#....#.....

..#..#.......#..#.......#

............#..#..............#..........#..#.......#..#..........#...............#.....#.....

..#..#.......#..#.......#

#########......#......#########..#########..#########..#########..#########......#......######

###..#########..#.......#

...............#......#..................#..........#..........#..#.......#.....#.......#.....

..#..........#..#.......#

...............#......#..................#..........#..........#..#.......#....#........#.....

..#..........#..#.......#

...............#......#..................#..........#..........#..#.......#...#.........#.....

..#..........#..#.......#

...........#########..#########..#########..........#..#########..#########..#..........######

###..#########..#########

...

.../..%%......%

....+..................*******........../...%%.....%.

....+..................*******........./..........%..

....+..................*******......../..........%...

+++++++++..---------...*******......./..........%....

....+..................*******....../..........%.....

....+..................*******...../..........%......

....+..................*******..../..........%.....%%

................................./..........%......%%

(c)

Fig. 2. Representation of the digits 0-9 (using the symbol '#') and all possible operators (using the symbol

that corresponds to each mathematical operation) for size=5 (case a), size=7 (case b) and size=9(case

c).

Although the representation of the majority of the aforementioned digits and operators seems to be quite

straightforward, special attention has to be paid when drawing:

1. The digit 1, where the diagonal slope should have a height equal to (size/2).

2. The digit 7, which is formed out of an horizontal line and a diagonal slope

3. The operator +, which have a height equal to (size-2)

4. The operator *, which have a height and width equal to (size-2)

5. The operator %, where each small circle is represented by a square with edge length equal to

(size/4)

Note: There is a newline character at the end of the last

line of the output.

Sample Input 1
-3

-6

*

@

7

2

Sample Output 1

 @@@@@@@

 @

 @

 @@@@@@@ @@@@@@@

 @

 @

 @@@@@@@

 @@@@@@@

 ***** @

 ***** @

 ***** @@@@@@@ @@@@@@@

 ***** @ @

 ***** @ @

 @@@@@@@

 @ @@@@@@@

 @@ @ @

 @ @ @ @

 @ @@@@@@@

 @ @ @

 @ @ @

 @@@@@@@ @@@@@@@

Sample Input 2
30120

1215

%

$

5

3

Sample Output 2

 $$$$$ $$$$$ $ $$$$$ $$$$$

 $ $ $ $$ $ $ $

 $$$$$ $ $ $ $$$$$ $ $

 $ $ $ $ $ $ $

 $$$$$ $$$$$ $$$$$ $$$$$ $$$$$

% % $ $$$$$ $ $$$$$

 % $$ $ $$ $

 % $ $$$$$ $ $$$$$

 % $ $ $ $

% % $$$$$ $$$$$ $$$$$ $$$$$

 $$$$$ $$$$$ $$$$$

 $ $ $ $ $

 $$$$$ $$$$$ $ $

 $ $ $ $ $

 $$$$$ $$$$$ $$$$$

QUESTION AK

Cavern Wireless Network
Vangelis the bear finally decided to properly set up the wireless network of his cavern. His cavern is

composed of multiple rooms connected by corridors. Due to the thickness of the walls the access to the

network is limited only to the neighboring rooms of the rooms with an access point. Neighboring rooms,

we call rooms that are directly connected by a corridor.

Task
Your task is to study the blueprints of his cavern and show all possible sets of rooms where Vangelis can

install an access point, while making sure that:

· each room that has an access point, has no neighbor with an access point,

· all rooms that do not have an access point, have at least one neighbor with an access

point,

· he installs as few access points as possible.

Blue Print

All possible access points locations

Input Format
Your program will read N lines (where 0 < N < 100).

Each line will contain two positive integer numbers (A,B, where 0 < A,B < 100) separated by one space

character. Each line represents the corridor between room A and B.

Output Format

Your program should print all possible sets that match the above criteria.

Each set should be separated by one new line character.

Sets should be printed in ascending order.

Each element of the set should be separated by one space character.

Elements should be printed in ascending order.

Example

Input

1 2

1 3

1 7

2 4

2 8

3 4

3 5

4 6

5 6

5 7

6 8

7 8

Output
1 6

2 5

3 8

4 7

QUESTION AL

Puzzle
Vangelis the bear and his older brother Mitsos got bored of Sudoku and so decided to create a

logic-based, combinatorial, number-placement puzzle of their own to play. The game they created

is quite simple:

1. One of the bears, shuffles a series A of N consecutive and unique numbers (where 0 < N

<= 20.000 and 0 < Ai <= N)

2. Creates 5 copies of the series and with each copy:

 a. Takes a random number, that was never moved in a previous copy, and moves it

to a random location

3. The 5 variations are then given to the second bear, which is asked to retrieve the original

sequence.

Notes: Sometimes a variation could be exactly the same as the original series.

Task
Your task is to calculate the original series after receiving the 5 copies.

Input Format
Your program will read 5*N+1 lines.

The first line will contain number N.

Lines 2..N+1: each will contain one number that belongs to the first copy

Lines N+2..2*N+1: each will contain one number that belongs to the second copy

Rest of the lines: similar.

Output Format
Your program should print the original series, one number per line.

Example

Input

5

5

4

1

3

2

4

5

1

3

2

1

5

4

3

2

3

5

4

1

2

2

5

4

1

3

Output
5

4

1

3

2

Details
In the above example, the original series is 5,4,1,3,2.

The 5 copies are the following:

· 5,4,1,3,2 -- number 5 was moved to position 1

· 4,5,1,3,2 -- number 4 was moved to position 1

· 1,5,4,3,2 -- number 1 was moved to position 1

· 3,5,4,1,2 -- number 3 was moved to position 1

· 2,5,4,1,3 -- number 2 was moved to position 1

QUESTION AM

Detecting shapes in a bitmap
Problem statement:

In image analysis, it is common to analyze a bitmap and observe the shapes present in it. For this

problem, design an algorithm to detect shapes in a given bitmap. The shapes present in the map

shall be from the set Square, Rectangle, Triangle and Parallelogram. In the bitmap each pixel is

represented as a bit, 1 - representing black and 0 - representing white. Participants are expected to

detect the shapes outlined in black.

Input

The first line will contain the size of the bit map in pixels represented as (Row,Column).

E.g. 6,8 this means a bit map of 6 rows and 8 columns.

The next line will contain a series of decimal digits from 0 to 255 separated by spaces. Each digit will

represent a collection of 8 binary bits in the bitmap. IE. 55 represents a binary pattern 00110111.

Note: There can be multiple shapes in a bitmap and NO shapes shall intersect. However there can

be shapes nested with each other without any intersection.

Output

The shapes present in the bitmap in ascending order of their names, separated by a comma and a space.

Eg. Rectangle, Square, Triangle

Note: There is NO linefeed or space at the end of the output

If any shape repeats, the output should contain as many repetitions as in the bitmap. ie. If there are 2

squares and one triangle, the output shall be Square, Square, Triangle

Example Set 1

Input:

6 8

0 126 66 66 126 0

Output:

Rectangle

Example Set 2

Input:

6 16

0 0 120 120 72 144 73 32 123 192 0 0

Output

Parallelogram, Square

QUESTION AN

Tangled lunch
Louis Carrol wrote a nice riddle:

"Given that one glass of lemonade, 3 sandwiches, and 7 biscuits, cost 14$; and that one glass of

lemonade, 4 sandwiches, and 10 biscuits, cost 17$: find the cost of 2 glasses of lemonade, 3

sandwiches, and 5 biscuits?"

We want you to write a program, given the input in sample input 1 to give the right solution, as a

rational number in a reduced form and positive denominator: 19/1.

In some cases, the problem can not be solved; in which case you should output "?".

For example, see sample input 2.

Note that the first input line contains the number of lines in the rest of the input.

Sample 1

input
3

1 3 7 14

1 4 10 17

2 3 5

output
19/1

Sample 2

input
3

1 1 4 4 10

1 1 5 5 12

1 0 0 0

output
?

Sample 3

input
4

1 4 1 4 2 1 3 5 6

2 7 1 8 2 8 1 8 3

3 1 4 1 5 9 2 6 5

0 1 -11 11 -19 54 -43 -11

output
-77/1

QUESTION AO

Mission simpossible
Your job, if you choose to accept it, is to help IBM ponder-this puzzlemaster check incoming

solutions for his riddle

http://domino.research.ibm.com/Comm/wwwr_ponder.nsf/Challenges/July2011.html

Input:

14 new-line terminated lines containing 80 characters each.

Output:

One of the following

A. Students x1, x2 and x3 do not have any day with different deserts.

B. Solution OK.

If there is a counter-example (case A above), you should choose the first triplet, in

lexicographical order to examplify it.

Sample input(1):

BCABC

ABCABCABCABCABC

AABBBCCCAAABBBCCCAAABBBCCCAAABBBCCCAAABBBCCCAAABBBCCCAAABBBCCCAAA

BBBCCCAAABBBCCC

AAAAAAAACCCCCCCCCBBBBBBBBBBBBBBBBBBAAAAAAAAACCCCCCCCCCCCCCCCCCBB

BBBBBBBAAAAAAAAA

BCBCACABABCBCACABABCBCACABABCBCACABABCBCACABABCBCACABABCBCACABABC

BCACABABCBCACAB

CBBACCBAACBBACCBAACBBACCBAACBBACCBAACBBACCBAACBBACCBAACBBACCBAACB

BACCBAACBBACCBA

AAAAAAAABBBBBBBBBCCCCCCCCCAAAAAAAAABBBBBBBBBCCCCCCCCCAAAAAAAAABBB

BBBBBBCCCCCCCCC

AACCCBBBBBBAAACCCCCCBBBAAAAAACCCBBBBBBAAACCCCCCBBBAAAAABCCCBBBBBB

AAACCCCCCBBBAAA

BCABCABCABCABCABCABCABCABCBCABCABCABCABCABCABCABCABCACABCABCABCAB

CABCABCABCABCAB

CBACBACBACBACBACBACBACBACBBACBACBACBACBACBACBACBACBACCBACBACBACBA

CBACBACBACBACBA

AAAAAAAABBBBBBBBBCCCCCCCCCBBBBBBBBBCCCCCCCCCAAAAAAAAACCCCCCCCCAA

AAAAAAABBBBBBBBB

BCBCACABBCACABABCCABABCBCABCACABABCCABABCBCAABCBCACABCABABCBCAABC

BCACABBCACABABC

CBCBABACBACACBCBACBABACACBBACACBCBACBABACACBACBCBABACCBABACACBACB

CBABACBACACBCBA

AAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBCCCCCCCCCCCC

CCCCCCCCCCCCCCC

AABBBCCCBBBCCCAAACCCAAABBBAAABBBCCCBBBCCCAAACCCAAABBBAAABBBCCCBBB

CCCAAACCCAAABBB

Sample output(1):

Students 20,23 and 56 do not have any day with different deserts.

Sample input(2):

ABCAB

CABCABCABCABCAB

AAABBBCCCAAABBBCCCAAABBBCCCAAABBBCCCAAABBBCCCAAABBBCCCAAABBBCCCAA

ABBBCCCAAABBBCC

AAAAAAAAABBBBBBBBBCCCCCCCCCAAAAAAAAABBBBBBBBBCCCCCCCCCAAAAAAAAABB

BBBBBBBCCCCCCCC

AAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBCCCCCCCCCCC

CCCCCCCCCCCCCCC

AAAAAAAAABBBBBBBBBCCCCCCCCCBBBBBBBBBCCCCCCCCCAAAAAAAAACCCCCCCCCA

AAAAAAAABBBBBBBB

AAAAAAAAABBBBBBBBBCCCCCCCCCCCCCCCCCCAAAAAAAAABBBBBBBBBBBBBBBBBBCC

CCCCCCCAAAAAAAA

ABCBCACABABCBCACABABCBCACABABCBCACABABCBCACABABCBCACABABCBCACABAB

CBCACABABCBCACA

ABCCABBCAABCCABBCAABCCABBCAABCCABBCAABCCABBCAABCCABBCAABCCABBCAAB

CCABBCAABCCABBC

AAABBBCCCAAABBBCCCAAABBBCCCBBBCCCAAABBBCCCAAABBBCCCAAACCCAAABBBC

CCAAABBBCCCAAABB

AAABBBCCCAAABBBCCCAAABBBCCCCCCAAABBBCCCAAABBBCCCAAABBBBBBCCCAAABB

BCCCAAABBBCCCAA

ABCABCABCBCABCABCACABCABCABABCABCABCBCABCABCACABCABCABABCABCABCBC

ABCABCACABCABCA

ABCABCABCCABCABCABBCABCABCAABCABCABCCABCABCABBCABCABCAABCABCABCCA

BCABCABBCABCABC

ABCBCACABBCACABABCCABABCBCABCACABABCCABABCBCAABCBCACABCABABCBCAAB

CBCACABBCACABAB

ABCBCACABCABABCBCABCACABABCCABABCBCABCACABABCABCBCACABBCACABABCAB

CBCACABCABABCBC

Sample output(2):

Solution OK.

QUESTION AP

N-dimensional board game
Consider a Peg Solitaire like board game, where a token is moved from a field to an empty field by

passing a neighbor token, that is in turn removed. A move thus requires an occupied field next to a token

and an unoccupied field next to its neighbor in the same direction.

The board has a range of D (2<D<10) fields in N (0<N<10) dimensions (thus having DN fields in total).

Each field may be occupied by a token, whose position is denoted with descending dimension: [p(N) p(N-

1) ... p(2) p(1)]

The example below illustrates a 2-dimensional board of size D=4 and the transition from a

configuration k to another configuration k+1.

In the example, the token on position [1 0] (green) is moved to position [1 2] and token [1 1] (red) is

removed. Obviously, the number of tokens is decremented with every move.

A token can be moved upwards and downwards in any dimension, the maximum number of possible

moves of a token is thus 2 D.

Every possible move of a configuration branches to a new configuration.

The game is considered to be lost if no moves are possible from a configuration and more than one token

is left, or to be won if a single token is resides in the configuration.

Task

Write a program that reads a start configuration (a single line from stdin) and outputs the the number of

possible won games (i.e. configurations with only one token left) to stdout (0 if no solution is found).

Input / Output format

A start configuration is denoted by a string, starting with size and dimensionality (separated by '-',

followed by ':'). Then the occupation of all fields of the configuration is given, while each dimension >1 is

enclosed by braces '{'/'}' as shown in the table below. An occupied field is indicated by '1', an empty field

by '0', separated by space characters. The input is terminated by '$'.

1-D “D-1:x x x$”

2-D “D-2:{x x x}{x x x}{x x x}$”

3-D “D-3:{{x x x}{x x x}{x x x}}{{x x x}{x x x}{x x x}}{{x x x}{x x x}{x x x}}$”

Example input, compare to sketch in the bottom:

4-2:{0 0 1 1}{0 0 1 1}{0 0 0 0}{0 0 0 0}$

Expected output:

integer number as string.

Example 1
Input:

4-1:1 0 1 1

Output:

1

One possible solution with

two moves as shown on

the right.

QUESTION AQ

Wooden railway

A little boy (let's call him Tom) owns a box with a set of wooden rails (the children's toy). There are six rail

types as shown in the table below. Each rail has one connector where it starts and at least one connector

to further rails (end points). The end point locations of a rail are defined by 2D positions (xe,ye) and the

connector's angle (tangent angle, degrees) with respect to the starting point of the rail. For curved

(circular) sections the end point is defined by the rail's radius and the end point's angle.

Sketch Type Description
End points

(xe,ye,angle)

0 Straight rail, length 20 cm (0.2, 0, 0)

1 Straight rail, length 30 cm (0.3, 0, 0)

2 Curved rail, angle 15°
(xe15,ye15,15)

radius = 0.58 m

3 Curved rail, angle 30°
(xe30,ye30,30)

radius = 0.58 m

4 Forward switch, angle 15°
(0.2, 0, 0)

(xe15,ye15,15)

5 Reverse switch, angle 15°
(0.2, 0, 0)

(0.2-xe15,ye15,165)

All the rails can be turned on their back, a curved rail can thus be used to turn left or right.

Connecting rails to the end points of other rails (the first rail starts at (0,0,0), the origin) in varying order

yields tracks of different shape. The end points of rails with no other rail connected to it are considered

as track end points. Depending on the rails in use and their connections, a track has a number of track

end points Nt. This number can be increased only by switches. Because a rail can be connected to

several end points at the same time (thus closing a gap between other rails),Nt can be decrease by any

type of rail.

Task

Tom is wondering how many tracks he can create of his set of rails.

Write a program that reads the number of rails of each type Nx from stdin. The program outputs the

minimum number of track end points and the number of validdifferent tracks with this property Ns that

can be constructed using all the rails in Tom's box.

ñ Tracks are considered to be different, if they do not have the same geometrical shape. Two

tracks have the same shape, if their connectors have the same positions and orientations.

ñ Tracks with intersecting rails (except the end point connections) are not valid. For simplicity,

two rails are assumed to intersect, if the straight lines between their start/end points intersect.

Input / Output format

All numbers are comma separated without any white space characters and on a single line. Rails are

given in ascending order (N0,N1,N2,...,N5). The result is expected in the same format: (Nt,Ns).

Example 1: Two 30° rails
Input:

0,0,0,2,0,0

Output:

1,4

Connecting the two curved rails in every possible way yields four tracks with one track end point each.

QUESTION AT

Bob•'s Financial Planning

Bob lives in Pecunia. It is a small island city completely governed by the Pecunia City Council (PCC).

PCC has decided to encourage foreign investments in the city by waiving several taxes for

establishing companies. Consequently, the city has attracted several high skilled workers from

across the country. The demand for condos has gone up.

During his career, Bob saved some money. He realized that this is the right time to invest in real

estate because the demand is soaring. He decided to purchase condos of different sizes and rent

them out. He collected data about condos available for purchase from the classified ads in the local

newspaper Pecunia Tribune.

PCC has laid out a plan in order to build infrastructure hand in hand with the amount of investment.

According to this, the influx of companies to various parts of the city will be carefully controlled for

the next few years. Bob used this data to estimate the prices of the condos in the coming years.

An important factor to keep in mind is property taxes. Bob has to pay a tax to PCC at the end of

every month for all the properties he owned during that month. It is a fixed percentage of the

estimated value of the property on that date. Also, whenever Bob purchases a property, he needs to

pay a fixed percentage of its value as registration fee to the government. Bob is confident that the

property tax rate and registration fee percentage will not change during his life time.

Bob has a secure job that guarantees a steady stream of income. He is confident of saving a fixed

percentage of his monthly salary (after tax) for investments until his retirement. Also, he gets an

annual bonus that can completely be used for investments. He wants to invest his current savings,

future savings and the rent he would obtain from his properties. He needs your help in coming up

with an investment plan such that his estimated net worth at the time of his retirement is maximized.

Net worth is defined as the value of all his properties plus any liquid cash.

Your input is a list of lines. The values in each line are separated by spaces. The significance of

each line in the input is explained below.

 Number of years to Bob‟s retirement [N]

 Bob‟s current savings [C]

 Percentage of Bob‟s monthly (after tax) salary that he could use towards investing

 N lines follow with each line containing two numbers – monthly salary for the year (after tax) [Si],

annual bonus for the year (after tax) [Bi]. i.e., the first line corresponds to the current year; the

next line corresponds to the next year and so on so forth

 Property tax percentage per month [T]

 Property registration fee percentage [F]. This is paid only once when Bob purchases a property

 Number of condos available for purchase [P]

 Each of the P lines that follow contains the details of a condo available for purchase. On each

line, there will be one or more 4-tuples (i.e., a sequence of 4 values). Those 4 values represent:

year [Yi]; month [Mi]; estimated rent [Ri]; estimated market value [Vi]. For example, the 4-tuple

Y1, M1, R1, V1 states that effective from the year Y1 and (the 1st of) month M1, the estimated

rent and market value of the condo are R1 and V1 respectively. The estimated rent and market

value of the condo are assumed to remain the same until Y2 and M2. Then on, R2 and V2 will

apply. Note that the first tuple will always have with Y1 = 1, M1 = 1, and the tuples are

chronologically ordered. i.e., the input always has Yi <= Yi+1and if Yi = Yi+1 then Mi < Mi+1.

Output should contain exactly one line: Bob•'s estimated worth when he retires rounded to 2

decimal points.

Assumptions

 Input is valid.

 All the money is in the same currency. Input numbers are positive floating point values rounded

to 2 places after the decimal point. They do not have any formatting (e.g., hundred thousand is

input as 100000 or 100000.00 but not as 100,000). Bob•'s maximum worth at the end of N

years is guaranteed to be less than a billion.

 Today is January 1st 2012.

 Bob•'s annual bonus is deposited on the December 31st of each year. Bob wants to retire at the

age of 60. He plans to retire on the December 31st (on or after his 60th birthday). Note that he

would get a bonus on that day.

 Bob•'s salary will remain the same for each month of any given year. It is deposited at the end

of each month. His tenants pay each month•'s rent at the end of it.

 The condos are on a month-to-month lease. Moving out of a condo can happen only on the last

day of a month. Moving into a condo can happen only on the 1st of any month i.e., there is no

scope for renting a condo for a part of a month.

 Assume that all the properties that Bob did not purchase are available for sale at all the time

during the next N years.

 The maximum number of properties available for purchase at any time [P] is less than or equal

to 15.

 The banks in Pecunia do not give any interest for keeping Bob•'s money with them. Also, he is

completely averse to borrowing money from people or organizations.

 Bob does property transactions (i.e., purchasing and selling) only at the end of a month.

Example

input
1

651.70

59

12.29 103.89

0.42

2

4

1 1 72.62 741.97 1 6 67.66 646.20 1 7 58.83 563.79 1 10 57.95 526.55 1 12 62.73 656.49

1 1 80.65 832.35 1 11 92.79 951.74 1 12 102.73 975.86

1 1 111.34 976.17 1 3 105.85 895.93 1 7 110.76 920.65 1 10 102.63 887.31 1 11 104.72 1094.79 1

12 94.91 898.43

1 1 67.15 564.28 1 11 65.47 553.74 1 12 52.53 530.26

Output

2248.64

QUESTION AW

Notation:
We use the following notation:

The input to the function is given in variables ("a", "b", etc).

Each Boolean gate gets two inputs and stores its output in the next consecutive letter.

We denote an AND gate by putting its inputs in alphabetical order (the first <= the second); and an

OR gate by reversing the order (the first > the second).

We assume that a capital letter represents the negation of its lower case.

For example, "abBA" computes two gates, the first is AND(a,b) and the second is OR(-a,-b) where -a

is the complement of a.

Another example "abAced" is an implementation of the multiplexer function:

mux(a,b,c) = b if a is true, c otherwise.

Explanation:

d <= -a AND b; it is an AND gate since a<b< div="">e <= - (NOT a) AND c; A means (NOT a) and

AND since a<c< div="">

f <= -d or e; it is an OR gate since e>d

And last example, "abABdcCD" computes the XOR and XNOR of two bits.

Task:
You get a function as defined above and you should compute the number of possible inputs which

would yield an output of 1 for each computed variable which is not used.

Note: We could have computed the same two outputs for the last example by using "abABdcEE", but

then our definition would have given only the second output (XNOR) and not both.

Input:
First line is the number of tests.

Each other line has the number of inputs bits and the function in the notation described above;

separated by a single space.

Output:
For each test you should output a single line which contains a list of comma separated numbers. one

for each computed, but ununsed variable in their alphabetical order.

Example 1:

Input:
3

2 abBA

3 abAced

2 abABdcCD

Output:
1,3

4

2,2

Example 2:

Input:
3

4 abcedf

4 dcebfa

3 ABabaAcebc

Output:
1

15

2,0,1,2

</c<></b<>

QUESTION AJ

Testing the traversal through different screens

Mr. Ajay is a test expert and he has an innovative approach to testing. His current assignment is to test a

particular application which traverses through multiple screens.

One screen can be traversed in multiple ways. The server response time to traverse between screens is

different.

The circles in the diagram represent the screens and if the screens are connected by edges, it means that

the screen can be traversed from the connecting screen. The numbers associated with the edges

represent the minimum response time in microseconds between the screens.

He has to navigate from one screen to a destination screen and return to origin screen, visiting any

screen at most once.. What is the fastest way to perform this traversal.

If he has to navigate from 1 to 7, the navigation path he takes is 1-4-6-7-5-2-1

But, Mr. Ajay finds it difficult to find the fastest route himself so he seeks help.

PS: always calculate the path from the first node to the last node and back

Input

The first line of test case will contain two integers: N(N<= 100) and R representing respectively the

number of screens and the connection between screens. Then R lines will follow each containing three

integers: C1, C2 and P. C1 and C2 are the screen numbers and P (P>1) is the limit on the minimum

server response time to navigate to the screen. Last line of the input should be the source and the

destination screen. Screen numbers are positive integers ranging from 1 to N.

Output

Output the shortest time to traverse from source to destination and back without repeating any screen.

Sample Input

7 10

1 2 30

1 3 20

1 4 10

2 4 25

2 5 60

3 6 70

4 7 35

4 6 20

5 7 10

6 7 15

Sample Output

145

	IEEE Xtreme Programming Challenge
	Environment for the programming languages
	How do the games work?

	Scoring System
	The scoring scheme

	What are test cases?
	Time Limit Exceeded?
	Wrong Answer?
	STDIN and STDOUT
	Does the last line in the input test case end with a newline?
	Company Problems
	I need help!
	Approximate Solution Type Problems
	Game Type Problem
	Sample Problem Statement
	Sample Input
	Sample Output

	Solution
	C
	C++
	C#
	Java
	Python
	Ruby
	PHP
	Lua
	Common Lisp

	Robot Tennis
	Task
	Input
	Output
	Sample Input 1
	Sample Output 1
	Sample Input 2
	Sample Output 2

	Digital Calculator
	Task
	Input
	Output
	Note: There is a newline character at the end of the last line of the output.
	Sample Input 1
	Sample Output 1
	Sample Input 2
	Sample Output 2

	QUESTION AK
	Cavern Wireless Network
	Task
	Input Format
	Output Format
	Example
	Input
	Output

	Puzzle
	Task
	Input Format
	Output Format
	Example
	Input
	Output
	Details

	Detecting shapes in a bitmap
	Tangled lunch
	Sample 1
	input
	output

	Sample 2
	input
	output

	Sample 3
	input
	output

	Mission simpossible
	N-dimensional board game
	Task
	Input / Output format
	Example 1
	Wooden railway
	Task
	Input / Output format
	Example 1: Two 30 rails
	Bob�'s Financial Planning
	Assumptions

	Example
	input
	Output

	Notation:
	Explanation:
	Task:
	Input:
	Output:
	Example 1:
	Input:
	Output:
	Example 2:
	Input:
	Output:

